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Abstract. Following the fundamentals of the Stern-Gerlach experiment, we propose for an experimental
situation eventually revealing the decoherence effect due to the internal mesoscopic environment. The
experiment-set-up we propose is a straightforward extension of the set-up recently used in the neutron
optics interference experiments. First, we point to and discuss the occurrence of decoherence for the atom’s
path in the Stern-Gerlach experiment. Then, comparing a Stern-Gerlach apparatus with the apparatus of
our set-up-proposal, we point out the occurrence of decoherence and consequently of non-violation of the
Bell’s inequality for a single atom’s degree of freedom due to the environment consisting of the order
of 102 particles.

PACS. 03.65.Yz Decoherence; open systems; quantum statistical methods – 03.75.Dg Atom and neutron
interferometry – 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities,
GHZ states, etc.)

1 Introduction

The issue of decoherence is a topic of interest for a vari-
ety of the different areas of modern theoretical and ap-
plied physics. From the fundamental physical point of
view, the decoherence effect is at the heart of the long-
standing problem of the “transition from quantum to clas-
sical” [1,2]. In this context, it is usually invoked a plausible
statement that, in the composite system “(open) system +
environment (S+E)”, the “environment (E)” should be a
sufficiently macroscopic system in order to provide effec-
tive the decoherence process [1,2]. As a corollary to this
conjecture naturally arises the expectation that a meso-
scopic environment might be of only a weak practical
use for the occurrence of the decoherence effect. Unfor-
tunately, the list of the experiments on decoherence per-
formed to date (cf., e.g., [3–5]) is neither long nor decisive
in this regard.

On the other side, however, there are some still
well-defined physical situations for which it is not easy (if
possible at all) to recognize a macroscopic environment.
E.g., in the standard Stern-Gerlach experiment, there is
not a room for a macroscopic “apparatus” (environment),
thus challenging the above distinguished point of view.
Furthermore, the standard model of the Stern-Gerlach
(henceforth: SG) experiment can be straightforwardly ex-
tended to account for a truly mesoscopic (yet internal) en-
vironment. As a corollary to this extension, one concludes
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that in certain physical situations, a mesoscopic system
can effectively play the role of the “environment” as de-
fined in the foundations of the decoherence theory. With
this observation under our belts, we are able to propose
for an experimental situation for testing the occurrence
of decoherence due to a mesoscopic yet internal environ-
ment. In a sense, with this, we indirectly test existence of
a mesoscopic environment in the standard Stern-Gerlach
experiment.

In this paper we propose for an experiment on the
occurrence of the decoherence effect where a mesoscopic
system consisting of the order of 102 particles acts effec-
tively as the environment for the spin-1/2 degree of free-
dom. Our proposal can be recognized as a straightforward
extension of the interference set-up recently used for the
neutron interferometry as presented in reference [6]. The
only change we suggest in the zeroth approximation of our
proposal is the substitution of the neutron beam with the,
e.g., Ag atom beam. Therefore, we propose for a situa-
tion, which compared to SG experiment, leads to a strik-
ing effect: the occurrence of decoherence and consequently
non-violation of the Bell’s inequality for the (ensemble of)
single atom.

Operationally, the (non)occurrence of the decoherence
effect can be tested indirectly, through testing validity of
the Bell’s inequality [7], in the manner exactly as it is
performed in the recent experiment in the neutron optics
interference experiment [6]. Certainly, non-violation of the
Bell’s inequality reveals the occurrence of the decoherence



174 The European Physical Journal D

effect, while the violation of the Bell’s inequality stems
non-occurrence of the decoherence effect.

The contents of this paper are as follows. In Section 2,
we give a compilation from the decoherence theory that
justifies existence and the mesoscopic character of the in-
ternal environment in the standard SG experiment. Actu-
ally, our analysis of SG experiment reveals the occurrence
of the decoherence effect before the atom reach the screen
(i.e. before the atom’s position-detection). The decoher-
ence is due to the internal (mesoscopic) environment (R in
our notation), which is usually not recognized and/or ac-
counted for in the standard analysis of SG experiment; to
this end, we emphasize the substantial role of the suffi-
ciently strong external magnetic field of the SG-magnet,
while the physical role of the mesoscopic environment R
is carefully explained mainly in Appendices A and B. In
Section 3, we point out the changes necessary to be made
in the experimental set-up for the neutron optics experi-
ment [6], thus defining a new physical situation of inter-
est, cf. Figure 1 below. Now, comparing a SG-apparatus
with a part of the new set-up, one concludes about the
occurrence of the decoherence effect and consequently of
non-violation of the Bell’s inequality in the situation con-
sidered. In order to make the experimental results con-
clusive, we give the constraints on the set-up-parameters.
In Section 4 we discuss our proposal in the light of the
present state of art in the field of the Stern-Gerlach ef-
fect. Section 5 is discussion revealing the general physi-
cal relevance and importance of the experiment proposed.
Section 6 is conclusion.

2 Internal mesoscopic environment
in the Stern-Gerlach experiment

Following the fundamentals of the quantum measurement
and the decoherence theory, in this section we distinguish
the fact eventually not widely recognized or admitted, that
in the standard Stern-Gerlach experiments the center-of-
mass coordinates of the, e.g., Ag atom, plays the role of
the “apparatus” as defined in the quantum measurement
theory. This observation will prove to be essential for the
arguments of the next section.

The composite system in the Stern-Gerlach (hence-
forth: SG) experiment is as follows: “atom’s-spin + the
spatial degrees of freedom of the atom + SG mag-
net + the screen”. In this widely used and analyzed model,
the SG-magnet field plays the role of the “external field”
defining the external potential energy for the atom travers-
ing the field. Therefore, in this (generally used) model of
the experiment, there is not a macroscopic system that
might serve as the “apparatus” for a quantum measure-
ment. In the mathematical terms, the potential energy V̂
is the “one-particle” observable depending on the degrees
of freedom of the atom, while the external field appears
as a classical variable (parameter) not allowing the back-
action of the atom to the field; i.e. V̂ = V (x̂i, p̂i, �B(x̂i)),
where �B(x̂i) represents the external, classical magnetic
field.

The net effect of the experiment (measurement of the
spin-1/2) is the appearance of the two clear spots of the
Ag atoms detected on the screen (detection of the atom’s
path before the screen would reveal the spin projection).
But this is really the fundamental fact for our discussion.
Actually, as the fundamentals of the quantum measure-
ment theory [8,9] stem, the non-appearance of the in-
terference fringes on the screen reveals the special role
of the screen: the screen serves, here, as an “apparatus”
of the quantum measurement of the so-called “second
kind” [9], revealing the state of the object of measurement
(here: of the atom) before the detection. In other words,
the result of the measurement (position-detection on the
screen) reveals that, in front of the screen, the center-
of-mass of the incoming atom has the well-defined semi-
classical paths. In the information-theoretic terms: before
the screen, the Ag-atom’s path is well-defined a classical
information about the atom.

The point strongly to be emphasized is that the fun-
damentals of the decoherence theory [1,2,10,11] suggest
that existence of the definite path (the definite classical
information about the atom’s path) can be established in
the universally valid quantum mechanics only through the
occurrence of the decoherence effect in the system “spin +
the spatial degrees of freedom + SG magnet”. But, now,
being the external-field-source, the SG magnet cannot play
the role of the apparatus (environment). Therefore, one
must, in the given model, refer to the following composite
system: “spin + the spatial degrees of freedom”.

This reasoning and the dilemma about the mesoscopic
character of the composite system are neither new nor
original. However, the decoherence theory offers the basis
for justifying the center-of-mass of the atom as the ef-
fective “apparatus” in the SG experiment. Actually, the
“atom” (i.e. its spatial degrees of freedom) is a subsys-
tem of interest that can be “decomposed” in the different
ways through the appropriate (linear) canonical transfor-
mations of the basic set of the variables (coordinates and
momenta). Certainly, of interest are those transformations
introducing the standard composite system “center-of-
mass + relative coordinates (CM+R)” that can be di-
rectly connected to the SG experiment. [Actually, the
original set of the coordinates, {xαi}, can be transformed
to define the two sets of coordinates, {XCMi; ξ

(αβ)
Ri }, and

the CM system is defined by the set of the coordinates

XCMi =
N∑

α=1
xαimα/

N∑
α=1

mα, N — the number of the par-

ticles in the system, xαi = �rα·�ei, �rα is the position-variable
of the αth particle, while the system R is defined by the
“relative” coordinates ξ

(αβ)
Ri = xαi −xβi, α, β = 1, 2, ...N .]

Namely, in the SG experiment, one indirectly observes
the definite paths of the CM system, and the relative-
coordinates system, R, remains properly to be included.
To this end, and this is the point to be emphasized, the
“relative coordinates system (R)” can be introduced as the
CM ’s environment, i.e. as a “generalized apparatus” [10]
performing the effective measurement of the atom’s path.
Yet, and as to the model considered, this is truly a meso-
scopic, internal environment — which is the issue yet to
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be fully investigated both theoretically and experimentally
in the general context of the decoherence theory, in which
the system S + CM + R can be recognized as the “ob-
ject (of measurement) + apparatus + environment” [10],
respectively.

Formally, the composite system of interest (a single
atom) is defined by the following factorization of the
Hilbert state space: HS⊗HCM ⊗HR, which bears obvious
notation. Formal occurrence of the decoherence effect in
this model is a straightforward extension of the existing
and widely used model (cf., e.g., Bohm [12]), and the de-
tails are given in Appendix A. Actually, in Appendix A we
show that entanglement-formation of the following type
occurs in the system:

|Ψ〉S |0〉CM |0〉R →
∑

i

Ci|i〉S |i〉CM |0〉R

→
∑

i

Ci|i〉S |i〉CM |i〉R, (1)

where |Ψ〉S =
∑

i Ci|i〉S is the initial state of the
(sub)system S. Then, the tracing out the “environment” R
leads to the (improper [9]) mixed state for the composite
system S + CM :

ρ̂S+CM =
∑

i

|Ci|2|i〉SS〈i| ⊗ |i〉CM CM 〈i|, (2)

in the time interval of the order of the so-called “de-
coherence time”, τD [1,2]. Certainly, the environment R
acts on the open system CM very much like the “ap-
paratus” in quantum measurement acts on the object of
measurement [10]; i.e. without the interaction in the sys-
tem CM + R, the composite system S + CM is subject
to the Schrödinger law, which preserves the entanglement∑

i Ci|i〉S |i〉CM .
From equation (2) it is obvious that the two subsys-

tems, S and CM , bear the classical correlations of their
states, as distinct from the “pure state” — entanglement
as given in equation (1). This effect is observable at least
for the time intervals of the order of τ , which is briefly
discussed in Appendix B.

Prima facie, the decoherence equation (2) stems exis-
tence of a well-defined path for an atom in free space, i.e.
in a situation that no external field is applied. However,
this is another subtlety of the model discussed briefly in
Appendix B. Therein, we point out nonexistence of the
definite path in this situation which is the basis for the
spatial interference of the atom’s paths in the interference
set-up presented in Figure 1, below. In Appendix B we
also strongly emphasize the role of the external magnetic
field �B for both, SG experiment, and for the experiment
herewith proposed. E.g., only for the sufficiently strong
magnetic field one may justify the dynamics equation (1),
which is substantial also for the experimental situation we
are concerned with.

In the more elaborate terms, in Appendices A and B,
we show that, for sufficiently strong magnetic field �B,
the dynamics equations (1, 2) results as an interplay be-
tween the dynamical processes of establishing the entan-
glement in S + CM system (the characteristic time τ1)

and the entanglement-establishing in the system CM +R
(the characteristic time τ2), while the “decoherence time”,
τD = τ2 + τ3, characterizes the decoherence effect equa-
tion (2), which is effective before the atom hits the screen.
If the magnetic field is not sufficiently strong, then the dy-
namics equations (1, 2), interferes with the “wave packet
spread” characterized by the time interval τ . Therefore,
the desired effect might be observable in the time inter-
vals shorter than this interval, τ .

So, we can conclude this Section with the following
observations: (i) in the SG experiment, the “relative par-
ticle” degrees of freedom of the Ag atom plays effectively
the role of the internal environment [13] acting as a quan-
tum “apparatus” on the center-of-mass system, and (ii)
the effect of this action can in principle be observed.

3 Quantum entanglement violation

We propose for an experiment to be performed in the man-
ner essentially of reference [6], but with the neutron beam
substituted by the, say, Ag-atom beam, cf. Figure 1. Fol-
lowing the conclusions of the preceding section, we are
able to show in this section that this substitution might
lead to non-violation of the Bell’s inequality — as a conse-
quence of the decoherence due to the mesoscopic internal
environment, R.

For the experimental set-up, Figure 1, the pure entan-
gled state of the type equation (1) occurs due to the in-
teraction Ĥint = µBŜSx ⊗Bx(x̂CM ), µB ≡ |e|�/2mc, and
where the magnetic field �B is the spin-turner (Mu-metal)
magnetic field, while for simplicity we assume that Bx =
B′

◦x, and �B = (Bx, 0, 0); the choice of the x-axis defines
the two regions, I and II, for x > 0 and x < 0, respec-
tively, for which, by definition, B(I) > 0 and B(II) < 0.

Then, for the initial state (before the system enters
the magnetic field) |Ψ(t = 0)〉S+CM = | ↑〉Sz ⊗ (|I〉CMx +
|II〉CMx)/

√
2, one obtains:

|Ψ(t)〉S+CM = exp(−ıtĤint/�)|Ψ(t = 0)〉S+CM

= (| ↓〉Sy|I〉CMx + | ↑〉Sy|II〉CMx)/
√

2,
(3a)

where |·〉Si represent the eigenstates of ŜSi, i = x, y and
the condition µBB′

◦t = π/2 (we set |x| = 1) is fulfilled;
t ≤ ∆t, where ∆t is the time interval in which the atom
traverses the magnetic field.

Then the decoherence effect due to the environment R
(cf. Sect. 2) gives for the final state of the system S +CM
the following mixed state:

ρ̂S+CM = trRρ̂S+CM+R

= (| ↓〉Sy|I〉CMxSy〈 ↓ |CMx〈I|
+ | ↑〉Sy|II〉CMxSy〈 ↑ |CMx〈II|)/2, (3b)

as formally presented by equation (2).
The expressions equations (3a, 3b) follow from the

apparent analogy between a part of the set-up Fig-
ure 1 and the SG-experiment set-up. Actually: the role
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Fig. 1. A sketch of the experimental set-up: slightly changed set-up for the neutron optics interference of reference [6]. As
distinct from the original set-up, our proposal set-up consists of the properly cooled beam of Ag atoms, as well as of the
appropriate Ag-atom interferometer. The spin-turner (Mu-metal) magnetic field �B and the space between the spin-turner and
the phase shifter are analogous with the SG-magnet and the space between the SG-magnet and the screen in the SG experiment,
respectively. The part of the set-up behind the spin-turner serves for the quantum measurements in analogy with the standard
tests of the Bell’s inequality. Due to the geometry in the spin-turner, the approximation for the spin-turner’s magnetic field,
|Bx| = B′

◦|x|, is justified. The two “paths”, I and II , are due to the passage of the atoms through the first plate of the
interferometer. Behind the spin-turner, there are the correlations of states of the two “subsystems”, S (spin) and CM (spatial
“trajectories”, I and II). Due to the decoherence effect (cf. Appendix A), these correlations are expected to be destroyed before
the atom reach the phase shifter which results in non-violation of the Bell’s inequality — cf. equations (8, 9).

of the SG magnet of Appendix A here is played by the
beam-splitter and by the spin-turner (Mu-metal) magnetic
field �B. The rest of the set-up Figure 1 behind the spin-
turner serves as the “apparatus” for the quantum mea-
surements necessary for testing the Bell’s inequality. For
the above choice (approximation) for the magnetic field
and the condition µBB′

◦t = π/2, the self-dynamics due
to ĤCM (i.e. the wave packet spread — which is not ac-
counted for in Eqs. (3a, 3b)) — can be neglected if the
inequality for the standard deviation of the initial mo-
mentum ∆p

(◦)
CMx 
 π/2 is satisfied — cf. Appendix B.

This condition can in principle be achieved by the proper
cooling of the incidental beam of the atoms.

In general, the desired effect might be observable even
if ∆p

(◦)
CMx �
 π/2 is satisfied, if the length, L, of the total

“path” of the atoms in the set-up satisfies:

L ≤ vminτ, (4)

where vmin ≡ vmax−∆v, as defined in Appendix B, and τ
is defined by equation (B.2) in Appendix B.

For the final state, equation (3b), one may easily prove
non-violation of the Bell’s inequality as follows. The task

is to calculate the quantity S defined as:

S = E(α1, χ1) − E(α1, χ2) + E(α2, χ1) + E(α2, χ2), (5)

where, operationally, E(α, χ) is defined as:

E(α, χ) =

N++(α, χ)+N++(α+π, χ+π)−N++(α+π, χ)−N++(α, χ+π)

N++(α, χ)+N++(α+π, χ+π)+N++(α+π, χ)+N++(α, χ+π)
.

(6)

The probabilities N++(α, χ) are defined as:

N++(α, χ) = trρ̂S+CM P̂ (S)
α ⊗ P̂ (CM)

χ , (7)

for the quantum state ρ̂S+CM , while the quantum mea-
surements for testing the Bell’s inequality are defined by
the following projectors:

P̂ (S)
α =

1
2
(| ↓〉S + exp(ıα)| ↑〉S)

× (S〈↓ | + exp(−ıα)S〈↑ |), (7a)

P̂ (CM)
χ =

1
2
(|I〉CM + exp(ıχ)|II〉CM )

× (CM 〈I| + exp(−ıχ)CM 〈II|), (7b)
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for the system S and CM , respectively.
For the choices: α1 = π/2, α2 = 0, χ1 = −π/4 and

χ2 = π/4, while the quantum state for the composite sys-
tem reads |Ψ〉 = 2−1/2(| ↓〉S |I〉CM +| ↑〉S |II〉CM ), one
obtains [6]: N++(α, χ) = [1 + cos(α + χ)]/4, and there-
fore E(α, χ) = cos(α + χ), which finally gives rise to the
violation of the Bell’s inequality, S = 23/2 > 2.

However, for the initial mixed state equation (3b) —
where |·〉S ≡ |·〉Sy and |·〉CM ≡ |·〉CMx — the given
choice of the parameters α, χ, gives for the probabilities
N++(α, χ):

N++(α, χ) = 1/4, ∀α, χ, (8)

i.e.
E(α, χ) = 0, ∀α, χ, (9)

which gives rise to the validity of the Bell’s inequality,
S = 0.

Therefore, our proposal for the experimental observa-
tion of the decoherence effect (non-violation of the Bell’s
inequality) reads: a properly cooled beam of the atoms
(such that the initial spread in the momentum ∆p

(◦)
CMx 


π/2) should be injected in the interference set-up as pre-
sented by Figure 1, while the condition:

µBB′
◦t = π/2, (10)

is fulfilled. The observation of decoherence should be per-
formed essentially as in the neutron optics experiment [6]
through the quantum measurements of the observables de-
fined as: ÂS = P̂

(S)
α − P̂

(S)
α+π and B̂CM = P̂

(CM)
χ − P̂

(CM)
χ+π .

If the condition ∆p
(◦)
CMx 
 π/2 can not be fulfilled, then

the total length of the “path” of the injected atoms should
satisfy the condition equation (4).

So, the desired effect should be observable in either
choice of the parameters of the experimental set-up: (i) if
the condition ∆p

(◦)
CMx 
 π/2 and equation (10) are sat-

isfied, or (ii) if the former condition is not satisfied, then
the total length of the “path” of the atom should satisfy
(cf. Eqs. (4, B.2)) L ≤ (vmax −∆v)�/m(∆v)2, where m is
the mass and ∆v is the standard deviation of the initial
velocity of the Ag atom.

As distinct from SG experiment, the desired effect in
our proposal may fail due to the following reasons. First,
if there appear (e.g., in the interference set-up) some un-
controllable effects (e.g., the decoherence effect). Then,
simply, our model would prove naive. Second, within the
model used, the desired effect might fail to appear if the
constraints on the set-up-parameters are not (or can not
be) fulfilled. E.g., if the length l1 + l2 (cf. Fig. 1) is small
enough that the atoms traversing this distance do not ex-
perience the decoherence effect — i.e. the decoherence ef-
fect is not completed. To this end, there is another con-
straint on the set-up-parameters: l1+ l2 > (vmax−∆v) ·τ3,
where τ3 ≡ τD−τ2, and the “decoherence time” τD should
be estimated in situ, while the interval τ2 is defined in
Appendix A.

The conditions of the observability of the desired effect
are summarized in Table 1.

Table 1. The conditions for observability of the desired ef-

fect, for the two “choices” for ∆p
(◦)
CMx — the initial spread

of the x-component of the atom’s center-of-mass momentum.
Notation: B′

◦ — cf. Appendix A; vmax, ∆v, m, represent the
maximum and the spread in the initial velocity-distribution,
and the mass of the atom, respectively; τ3 ≡ τD −τ2, where τD

is the so-called decoherence time, while τ2 is the characteris-
tic time for the entanglement formation in the S + CM + R
system.

∆p
(0)
CMx � π/2 ∆p

(0)
CMx ∼ π/2

µBB′
0t = π/2 µBB′

0t = π/2

l1 + l2 ≥ (νmax − ∆ν)τ3 l1 + l2 ≥ (νmax − ∆ν)τ3

L ≤ (νmax−∆ν)h

2πm
(

∆p
(0)
CMx

)2

4 Preparation of the initial atomic beam

The model of the composite system S + CM (cf.
Eqs. (A.1–A.6) in Appendix A) that we employ is essen-
tially attributable to Bohm [12]. Nevertheless, this model
is in the general use in the research work devoted to the
SG issues (cf., e.g., [14–16], and references therein). The
theoretical studies employ the different methods of cal-
culating the system’s dynamics — cf., e.g., reference [14]
in contrast to Bohm [12] — but the results are certainly
mutually equivalent. Therefore, it seems that the only re-
maining “critical” point in our proposal refers to the stage
of preparation of the initial atomic beam.

As to the initial state of the CM system, we pose the
constraint (cf. Tab. 1) on ∆p

(◦)
CMx. To this end, we suggest

a proper cooling of the atomic beam without entering the
concrete experimental tasks in this regard.

As to the polarization of the spin — preparation of
the system S — we emphasize a need for a specific, rather
than for arbitrary polarization. Actually, for certain par-
tially polarized atomic beams, there might appear non-
validity of the Bell’s inequality even without taking the
environment R into account. Needless to say, in such
cases the occurrence of decoherence — that should be re-
vealed through non-violation of the Bell’s inequality — is
“masked”. More precisely, as we show in Appendix C, for
the mixed (partial) initial polarization:

ρ̂S = ω1| ↑ 〉SzSz〈 ↑ | + ω2| ↓ 〉SzSz〈 ↓ |, (11)

as long as ω1 > 2−1/2, one should expect violation of
the Bell’s inequality. In Appendix C, we also show that
taking the environment R into account gives rise to non-
violation of the Bell’s inequality independently on the
value of ω1, 0 < ω1 < 1. Therefore, for the sake of our pro-
gram, the initial spin polarization ρ̂S should be such that
ω1 > 2−1/2. Then, non-violation (validity) of the Bell’s in-
equality should be ascribed solely to the decoherence effect
as described in Section 3.

The efficient spin polarization methods exist (cf.,
e.g., [15,16], and references therein), including the full
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spin polarization [16], for which ω1 = 1 > 2−1/2 (or
ω2 = 1). In Figure 1, we assume the fully polarized spin
along the (+z)-axis, albeit the polarization ρ̂S , for which
ω1 > 2−1/2, is sufficient for our purposes. Finally, we sug-
gest in this regard the use of the Magnetic Prism Polarizer,
which employs the Stern-Gerlach effect [6,16].

5 Discussion

Our analysis of the Stern-Gerlach experiment does not
only reveal the subtlety of the quantum measurement of
spin-1/2, but also offers the possibility to definitely an-
swer the question “where (in this measurement) the effect
of decoherence takes place?”. Actually, it is sometimes as-
sumed that only on the screen (which captures the incom-
ing atoms) one has the final effect, and consequently, that
there is not the decoherence effect before the screen. As
opposite to this viewpoint, we give (cf. Sect. 2) the argu-
ments for the occurrence of the decoherence effect before
the screen. Then, one seems forced to conclude that the
answer to the above question reads: the decoherence effect
unfolds before the atom reach the screen, due to the effec-
tiveness of the internal (and mesoscopic) environment —
the system R in our notation — and should be considered
to be objective, since no observer is present in between the
source of the atoms and the screen.

Reducing the physical processes equations (3a, 3b)
onto SG experiment of Appendix A is justified also by the
following observations. In front of the spin-turner mag-
netic field ( �B, in our notation), the Ag atoms give rise to
the diffraction effect on the first plate of the interferome-
ter, thus defining the two interfering “paths” I and II in
the (x − y)-plane. This diffraction is possible due to in-
effectiveness of the interaction ĤCM+R relative to ĤCM ,
equation (A.4), as distinguished in Appendix B for the
case that no external magnetic field is applied. Only in
the domain of the spin-turner magnetic field, the effective
interaction ĤS+CM+R = ĤS+CM + ĤCM+R may domi-
nate in the system, and if the condition ∆p

(◦)
CMx 
 π/2

is fulfilled, then the self-dynamics due to ĤCM can be
neglected (cf. Appendix B). Therefore, the two different
effects are employed in the experiment proposed. First,
there is the spatial interference of the Ag atom beam, and
later (in between the spin turner and the spin shifter), the
decoherence of the different, implicit “paths” I and II,
takes place, just as it happens in the SG experiment.

The assumption of the coupling in the system CM +R
is essential for our considerations, for few reasons. First, it
reveals “where” (in the spin-1/2 measurements) the deco-
herence takes place, thus making the effect of decoherence
objective — no observer directly reads out the state of the
system R (or of S + CM) — while allowing the inter-
pretation in terms of the single objects (i.e. of the single
atoms). Second, the condition l1 + l2 > vminτ3 (cf. Tab. 1)
might not be fulfilled, in which case the decoherence ef-
fect is simply not completed, thus eventually giving rise
to violation of the Bell’s inequality. The “transition” be-
tween the two cases, l1 + l2 > vminτ3 and l1 + l2 < vminτ3,

bears similarity with the effect of the “short-living entan-
gled states”, which has recently been experimentally ob-
served [17], thus implicitly revealing the “border territory”
between the “quantum” (l1 + l2 < vminτ3) and the “clas-
sical” (l1 + l2 > vminτ3) in the experiment here proposed.
Third, and eventually the most interesting, the desired ef-
fect directly reveals the possibility of effectiveness of the
mesoscopic yet internal environment for the occurrence of
the decoherence effect. To this end, it is a fundamental
question in the foundations of quantum physics generally,
“where is a border line between the ‘quantum’ and ‘classi-
cal’ worlds?”, or — as it is suggested by the recent experi-
ments with the fullerene interferometry [18] — there is not
a sharp line dividing the two physical worlds. Needless to
say, sharpening this question might open a new path in the
search for the microscopic origin of the phenomenological
irreversibility, which is the central issue of the problem
of the “transition from quantum to classical” [1,2]. Cer-
tainly, all these answers crucially depend on the outcome
of the proposed experiment.

As to the experiment proposed, we assume that no
other mechanism of decoherence of the different paths for
the Ag atoms beam proves effective. In this regard, we re-
sort to the generally adopted [12,14–16] model of SG ex-
periment which does not presume any other mechanism of
decoherence. Even more important, we assume that the
presumed mechanism of decoherence is universal for the
Ag atoms, by simply not having the reason to doubt about
the absence of this effect if — as it seems necessary — it
reveals itself in the spin-1/2 measurement. So, the two
main possibilities concerning the outcomes of the experi-
ment proposed are the following. First, if the experiment
does not reveal non-validity of the Bell’s inequality, we
meet the necessity of the substantial revision of the foun-
dations of the quantum measurement theory (e.g., then,
the decoherence takes place on the screen, and we do not
have the job with the “retrospective” measurement (of
the “second kind”) on the screen — contrary to the com-
mon wisdom [7,9,19]). Second, in the case the experiment
reveals validity of the Bell’s inequality, we end up with
the consistent physical picture with the nontrivial obser-
vations as essentially distinguished above. To this end, it is
worth emphasizing that (supposed) effectiveness of the in-
ternal, mesoscopic environment justifies importance of the
investigation of the internal environment in the “macro-
scopic” world (i.e. in the quantum physics of complex,
many-particle systems). Finally, this would be the first
observation ever of the influence of the internal environ-
ment, which is of the order of 102 particles, so extending
the standard wisdom about the necessity of the “macro-
scopic environment” for the occurrence of the decoherence
effect [1,2,10,20].

6 Conclusion

In certain experimental situations analogous to the stan-
dard Stern-Gerlach experiment, one may expect the oc-
currence of the decoherence effect due to the mesoscopic,
internal environment. With the slight (not operationally
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trivial yet) changes of the set-up for the neutron optics
interference, we are able to distinguish the range for the
set-up-parameters that might allow the occurrence of de-
coherence and consequently non-violation of the Bell’s in-
equality for certain (spatial) degrees of freedom of a single
atom, in contradistinction to the similar experiments with
neutrons.

I benefited much from the discussions with Prof. Anton
Zeilinger and Prof. Yuji Hasegawa. My thanks are due also to
WUS Austria for their financial support of my visit to the In-
stitute of Experimental Physics (University of Vienna), where
a part of this work has been done.

Appendix A

The composite system for the Stern-Gerlach experiment
(measurement of the spin-1/2) is defined as “(atom’s) spin
+ center-of-mass + relative coordinates + SG-magnet +
the field” — S + CM + R + M + F . That is, a single
Ag atom is considered as a composite system defined as
S + CM + R.

Prima facie, the Hamiltonian of the system is de-
fined as:

Ĥ = ĤS + ĤCM + ĤR + ĤS+CM , (A.1)

where ĤS and ĤR represent the Hamiltonians of the non-
interacting “systems”, where ĤS+CM is the interaction
Hamiltonian for the composite system S + CM due to
the applied external magnetic field �B(x̂CM ); xCM is the
x-coordinate of the center-of-mass of the atom. Needless
to say, ĤS+CM = µBŜSx ⊗ Bx(x̂CM ); µB ≡ |e|�/2mc. It
is essential to emphasize that, in this model, the SG mag-
net plays the role of the field source, and not of a dy-
namical system. That is, in the standard (and generally
used) model (cf., e.g., [12,14–16]), neither the field, nor
the SG magnet itself are subject to any changes due to the
interaction with the atom. So, the variables of the SG mag-
net and of the field appear just as the parameters, through
the magnetic field, �B, which can be modeled as [16]:

�B = (Bx, 0, 0), Bx = B′
◦x̂CM . (A.2)

Therefore, one may conclude that, in the given model, nei-
ther SG magnet, nor the magnetic field might play the role
of the “apparatus” for the spin-measurement. Therefore,
the model Hamiltonian (A.1) should be redefined in or-
der to include the “apparatus”, which should provide the
successful measurement.

In the composite system S +CM +R, only the subsys-
tem R might play such a role. Actually, with the formal
introduction of the interaction Hamiltonian ĤCM+R, one
can make the whole picture consistent. That is, with a
proper modeling of ĤCM+R, one may formally obtain the
conditions necessary for the occurrence of the decoher-
ence effect concerning the system CM [11]. Furthermore,
due to the correlations of states in the system S + CM

— which, in turn, are due to ĤS+CM — the decoherence
effect also refers to the composite system S + CM .

The simplest model for ĤCM+R utilizing the desired
conditions reads (cf. Dugić [11] for technical details):

ĤCM+R = C(|I〉CM CM 〈I|−|II〉CM CM 〈II|)⊗D̂R, (A.3)

where C is the coupling constant, and D̂R is arbitrary ob-

servable of the system R; we denote |I〉〈I| ≡
∞∫
0

|x〉dx〈x|,
and |II〉〈II| = Îx − |I〉〈I|. A straightforward generaliza-
tion of this model allows accounting for the possibility of
measurement of arbitrary projection of the spin, Ŝn (�n is a
unit vector determining the axis, i.e. the spin projection).

Now, if the inequalities:

‖ĤS+CM‖ � ‖ĤCM‖, ‖ĤCM+R‖ ∼ ‖ĤCM‖, (A.4)

are fulfilled (the effective interaction in the system (S +
CM) + R is ĤS+CM+R = ĤS+CM + ĤCM+R), then it is
straightforward [11] to prove that the composite system’s
dynamics is given by the following state transformations:

∑
i

Ci|i〉S |0〉CM |0〉R τ1−→

(C1| ↓〉S |I〉CM + C2| ↑〉S |II〉CM )|0〉R
τ ′
2−→ C1| ↓〉S |I〉CM |+〉R + C2| ↑〉S |II〉CM |−〉R, (A.5)

where the spin states refer to the x-projection of the spin,
and τ1, τ2 ≡ τ1 + τ ′

2, are the characteristic time intervals
for the entanglement formation in the system S+CM and
(S + CM) + R, respectively [21].

Now, the tracing out the environmental (R’s) degrees
of freedom, “trR”, gives for the S+CM ’s (reduced) density
matrix:

ρ̂S+CM = |C1|2| ↓〉S|I〉CM S〈 ↓ |CM 〈I|
+ |C2|2| ↑〉S |II〉CM S〈 ↑ |CM 〈II|, (A.6)

in accordance with the SG-experiment effect, equation (2).
The three dynamical processes dominate in the SG

experiment as well as in the set-up Figure 1: (i) the
wave packet splitting (i.e. the “path” (I and II) interfer-
ence) due to the self-Hamiltonian ĤCM (the characteristic
time τ discussed in Appendix B), (ii) the entanglement
formation due to ĤS+CM (the characteristic time τ1),
and (iii) the entanglement formation due to the interac-
tion ĤCM+R (the characteristic time τ2). While the pro-
cesses (i) and (iii) are present all the time of the experi-
ment, the process (ii) takes place only in the spatial area
of the magnetic field.

So, as regards Figure 1, the three processes are simulta-
neous in the spatial area of the spin-turner magnetic field.
Now, given the plausible assumptions equation (A.4), the
ordering in equation (A.5) — which are due to the interac-
tions ĤS+CM and ĤCM+R, respectively — can be easily
proved [11], while the decoherence effect equation (A.6)
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should be completed (effective) before the atom reach the
phase shifter. To this end, the decoherence time, τD, not
explicit in equation (A.5), remains undetermined, except
that it is expectable to satisfy the inequality τD � τ2 [21].
That is, by τ2 we denote the lower bound [21] on the time
necessary for the entanglement formation in the CM + R
system. If τ2 is the characteristic time for this process,
then the estimation τD � τ2 (τD = τ2 + τ3) — cf.
reference [21], footnote 2 — stems the unfolding of the
decoherence effect also behind the spin-turner set-up.

The dynamical process (i) is the subject of Ap-
pendix B.

Appendix B

The strength of the external magnetic field �B(x̂CM ) is es-
sential for both, equation (A.4) to be fulfilled, as well as for
the appearance of the desired effect. As to the later, it is
well-known [12], that the product µBB′

◦t should be much
greater than the spread in the initial momentum along the
x-direction, ∆p

(◦)
CMx, in order to provide distinguishability

(nonintersecting) of the two spots on the screen. That is,
for the magnetic field as defined by equation (A.2), the
condition (cf. Eq. (10), where µBB′◦t = π/2):

π/2 = µBB′
◦t � ∆p

(◦)
CMx, (B.1)

guarantees the well-defined (nonintersecting) spots on the
screen; then the dynamics due to ĤCM (i.e. the wave
packet spread–the process (i) in Appendix A) can be ne-
glected [12].

To this end, one may wonder if the path of an atom
in free space (i.e. when no external field is applied) are
well defined due to the interaction ĤCM+R. However, as
it is well-known from the general decoherence theory [11],
only for a sufficiently strong interaction ĤCM+R this ef-
fect might be unavoidable — which is not the case in
the model studied, cf. equation (A.4). So, the role of the
strong external magnetic field is threefold. First, it pro-
vides splitting of the two “paths” (I and II) for the
atom [12]. Second — cf. equation (B.1) — the strong
field guarantees nonintersection (i.e. mutual distinguisha-
bility) of the spots on the screen [12]. Third, only for the
strong magnetic field, the effective interaction ĤS+CM+R

(ĤS+CM+R = ĤS+CM + ĤCM+R) is strong enough to
provide (cf. Eq. (A.4)) the occurrence of the decoherence
effect, equation (A.6). The decoherence process starts be-
ing efficient in the magnetic field spatial area, and com-
pletes in between the SG-magnet and the screen (cf. Ap-
pendix A). As to Figure 1, the decoherence effect should
be completed (effective) in between the spin-turner and the
phase shifter.

However, if the condition equation (B.1) can not be
obeyed (e.g. for some practical reasons), then the distin-
guishability of the spots on the screen can be achieved in
the time intervals less than the following interval τ :

τ = m�/(∆p
(◦)
CMx)2, (B.2)

which easily follows (for our case) from the general ex-
pression (τ = [(∆p)2d2ω /dp2]−1/2) for the wave packet
spread [12]. Therefore, virtually independently on the
strength of the external magnetic field — except for the
conditions equation (A.4) to be fulfilled — for the time
intervals of the order less than τ given by equation (B.2),
one would have perfect distinguishability of the desired
spots on the screen. As a constraint, one should design
the experiment so that the total length of the “flight”
of the atoms should not exceed the length vminτ , where
vmin ≡ vmax−∆v, and vmax is the maximum, while ∆v is
the standard deviation, of the atom’s velocity distribution
along the x-direction.

Appendix C

Let us assume the partial initial polarization of the spin:

ρ̂S = ω1| ↑ 〉SzSz〈 ↑ | + ω2| ↓ 〉SzSz〈 ↓ |. (C.1)

In analogy with equation (3a), neglecting the environ-
ment R, one obtains for the final state of the S + CM
system as follows:

ρ̂S+CM = ω1|Ψ1〉〈Ψ1| + ω2|Ψ2〉〈Ψ2|, (C.2)

where

|Ψ1〉 = 2−1/2(| ↓〉Sy|I〉CMx + | ↑〉Sy|II〉CMx), (C.3)

|Ψ2〉 = 2−1/2(| ↑〉Sy|I〉CMx + | ↓〉Sy|II〉CMx). (C.4)

Now, the probabilities defined in equation (7) read:

N++(α, χ) = trρ̂S+CM P̂
(s)
(α) ⊗ P̂

(p)
(χ) , (C.5)

which, after the simple algebra and for the choices of α’s
and χ’s as in Section 3, gives:

E(α1, χ1) = −E(α1, χ2) = −2−1/2 + ω121/2, (C.6)

E(α2, χ1) = E(α2, χ2) = 21/2. (C.7)

Finally,

S = E(α1, χ1) − E(α1, χ2) + E(α2, χ1) + E(α2, χ2)

= 23/2ω1. (C.8)

Obviously, for ω > 21/2, there occurs the violation of the
Bell’s inequality, while for ω ≤ 21/2, the Bell’s inequality
is satisfied.

Taking the environment R into account, for the initial
state equation (C.1), one obtains:

N++(α, χ) = 1/4, ∀α, χ, (C.9)

thus giving rise to E(α, χ) = 0, ∀α, χ, i.e. to the validity
of the Bell’s inequality — S = 0.
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